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Abstract
Graph clustering is a central topic in unsuper-
vised learning with a multitude of practical appli-
cations. In recent years, multi-view graph clus-
tering has gained a lot of attention for its appli-
cability to real-world instances where one has
access to multiple data sources. In this paper we
formalize a new family of models, called multi-
view stochastic block models that captures this
setting. For this model, we first study efficient
algorithms that naively work on the union of mul-
tiple graphs. Then, we introduce a new efficient
algorithm that provably outperforms previous ap-
proaches by analyzing the structure of each graph
separately. Furthermore, we complement our re-
sults with an information-theoretic lower bound
studying the limits of what can be done in this
model. Finally, we corroborate our results with
experimental evaluations.

1. Introduction
Clustering graphs is a fundamental topic in unsupervised
learning. It is used in a variety of fields, including data
mining, social sciences, statistics, and more. The goal of
graph clustering is to partition the vertices of the graph into
disjoint sets so that similar vertices are grouped together
and dissimilar vertices lie in different clusters. In this con-
text, several notions of similarity between vertices have
been studied throughout the years resulting in different clus-
tering objectives and clustering algorithms (Von Luxburg,
2007; Ng et al., 2001; Bansal et al., 2004; Goldberg, 1984;
Dasgupta, 2016).

Despite the rich literature, most of the algorithmic results
in graph clustering only focus on the setting where a single
graph is presented in input. This is in contrast with the
increasing practical importance of multimodality and with
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the growing attention in applied fields to multi-view or multi-
layer clustering (Paul & Chen, 2016; Corneli et al., 2016;
Han et al., 2015; De Bacco et al., 2017; Khan & Maji, 2019;
Zhong & Pun, 2021; Hu et al., 2019; Abavisani & Patel,
2018; Kim et al., 2016; Gujral et al., 2020; Ni et al., 2016;
De Santiago et al., 2023; Papalexakis et al., 2013; Gujral &
Papalexakis, 2018; Gorovits et al., 2018). In practice it is in
fact observed that while a single data source only offers a
specific characterization of the underlying objects, leading
to a coarse partition of the data, a careful combination of
multiple views often allows a semantically richer network
structure to emerge (Fu et al., 2020; Fang et al., 2023). For
a practical example, consider the task of clustering users of
a social network platform like Facebook, Instagram or X.
To solve such task one could simply cluster the friendship
graph, or one could cluster such graph by looking together
at the friendship graph, the co-like graph (a graph where two
users are connected if they like the same picture/video), the
co-comment graph (a graph where two users are connected
if they comment on the same post), the co-repost graph (a
graph where two users are connected if they repost the same
post) and so on and so forth. In practice, one would expect
the second approach to work better in many settings because
it provides a more fine-grained description of the behaviors
of the users.

Despite the large number of basic applications, very little
is known on the theoretical aspect of the problem. Sev-
eral works (Paul & Chen, 2016; Corneli et al., 2016; Han
et al., 2015; De Bacco et al., 2017) consider the multi-layer
stochastic block models where the goal is to identify k
communities given several instances (i.e., layer or view)
of the stochastic block model, each with k communities.
In this paper, we would like to work in a more general
and more realistic setup, where there are k communities
but each instance only provides partial information about
these k communities. Very recently and concurrently to
us, (De Santiago et al., 2023) introduced the multi-view
stochastic block model. In this model, one is given in in-
put multiple graphs, each coming from a stochastic block
model, and the goal is to leverage the information contained
in the graphs to recover the underlying clustering structure.
More precisely, given a vector of labels1 z where the la-
bels capture the clustering assignment and are in [k], and

1We write random variables in boldface.
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t graphs G1, . . . ,Gt, where each graph G` is drawn inde-
pendently from a stochastic block model with 2 labels and
possibly distinct parameters, we are interested in design-
ing an algorithm to weakly recover the underlying vector
z. One important aspect of the model is that none of the
input graphs G1, . . . ,Gt may contain enough information
to recover the full clustering structure (for example because
2 < k), nevertheless one can show that if enough graphs are
observed it is possible to recover the clustering structure of
the underlying instance.

Armed with this new model we study different approaches
to cluster the input graphs G1, . . . ,Gt. First, we note that
the natural approach (sometimes used in practice) of merg-
ing the graphs and then clustering the union of the graphs,
called early fusion, leads to suboptimal results. Then we
design a more careful late fusion clustering algorithm that
first clusters all the graphs separately and then carefully
merges their results. This shows the superiority of late over
early fusion. Finally, we complement our results with an
information-theoretic lower bound studying the limits of
what can be done in this model. The bounds obtained are a
drastic improvement over the ones obtained by (De Santiago
et al., 2023).

Model Before formally introducing our model, we recall
the classic definition of the stochastic block model.

The k community symmetric stochastic block model (see
(Abbe, 2017) for a survey) denotes the following joint dis-
tribution (x,G) ∼ SBMn,k,d,ε over a vector of n labels in
[k] and a graph on n vertices:

• draw x from [k]n uniformly at random;

• for each distinct i, j ∈ [n], independently create an
edge ij in G with probability (1 + (1− 1

k )ε) dn if xi =

xj and probability (1− ε
k ) dn otherwise.

We denote the conditional distribution of G given x = x
as SBMk,d,ε(x) . Given a graph G sampled according to
this model, the goal is to recover the (unknown) underlying
vector of labels as well as possible.

Most of the statistical and computational phenomena at play
can already be observed in the simplest settings with two
communities, so we will often focus on those. For k = 2,
we denote the distribution by SBMn,2,d,ε , i.e., we explicitly
replace the subscript k. It will also be convenient to use
{+1,−1} for the community labels instead of [2], so we
will sometimes do this. The labeling convention should be
clear from the context.

One of the most widely studied natural objective in the con-
text of stochastic block models is that of weak recovery
–asking to approximately recover the communities. Specif-
ically, we say that an algorithm achieves weak recovery

for {SBMn,k,d,ε}n∈N if the correlation of the algorithm’s
output x̂(G) ∈ [k]n and the underlying vector x of labels is
better than random as n grows,2

P
(
R(x̂(G`),x`) >

1

k
+ Ωd,ε/k(1)

)
> 1− o(1) , (1)

where R(x̂, x) is the agreement between x̂ and x, defined
as3

R(x̂, x) = max
π∈Pk

1

n

∑
i∈[n]

Jx̂i = π(xi)K , (2)

and Pk is the permutation group of [k] .

A sequence of works (Decelle et al., 2011; Massoulié, 2014;
Mossel et al., 2014; 2015b; Abbe & Sandon, 2016a; Mos-
sel et al., 2018; Montanari & Sen, 2016), have studied the
statistical and computational landscapes of this objective,
with great success. The emerging picture (Bordenave et al.,
2015; Abbe & Sandon, 2016a; Montanari & Sen, 2016)
shows that it is possible to achieve weak recovery in poly-
nomial time whenever dε2/k2 > 1, this value is called
the Kesten-Stigum threshold. Further evidence (Hopkins
& Steurer, 2017) suggests that this threshold is optimal for
polynomial time algorithms. In particular, for the special
case of weak recovery with 2 communities (Mossel et al.,
2015b) showed that the problem is solvable (also compu-
tationally efficiently) if and only if dε2/4 > 1. For larger
values of k a gap between information-theoretic results and
efficient algorithms exists (Abbe & Sandon, 2016b; Banks
et al., 2016).

In the context of multimodality, we define the following
multi-view model.

Model 1.1 (Multi-View stochastic block model). Let k > 1
and let T be a sequence of t tuples (d`, ε`) where d` > 0
and ε` ∈ (0, 1) . We refer to the following joint distribu-
tion (z, (f1,G1), . . . (ft,Gt)) ∼ (T ,k,t)-MV-SBMn as the
(T , k, t)-multi-view stochastic block model:

1. for each ` ∈ [t], independently draw a mapping f` :
[k]→ {±1} uniformly at random;

2. independently draw a vector z from [k]n uniformly at
random;

3. for each ` ∈ [t], independently draw a graph G` ∼
SBMn,2,d`,ε`(f`(z)), where f`(z) is the n-dimensional
vector with entries f`(z1), . . . , f`(zn) .

Given G1, . . . ,Gt, the goal is to approximately recover the
unknown vector z of labels.

2We use o(1) to denote a function f such that
limn→∞ f(n)/1 = 0 .

3We use Iverson’s brackets to denote the indicator function.
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When T = {(d`, ε`)}`∈[t] is such that (d`, ε`) =
(d, ε) for some d, ε, we denote the model simply by
(d,ε,k,t)-MV-SBMn.

Although Model 1.1 captures the algorithmic phenomena of
multi-view models used in practice, more general versions
of Model 1.1 could be defined, we discuss them in Section 6.
Similarly to the vanilla stochastic block model, weak re-
covery can also be defined for Model 1.1. We say that an
algorithm achieves weak recovery for (T ,k,t)-MV-SBMn

with t observations, if it outputs a vector ẑ(G1, . . .Gt) sat-
isfying:

P
(
R(ẑ(G1, . . .Gt), z) >

1

k
+ Ω(1)

)
> 1− ot(1) .

(3)

Differently from the vanilla stochastic block model, the
complexity of Model 1.1 is governed both by the SBM pa-
rameters in T and by the number of observations t. A good
algorithm should then achieve weak recovery with the best
possible multiway tradeoff between the edge-densities of
the graphs, the biases and the number of observations at
hand. That is, extract as much information as possible so
to require as few observations as possible. This novel inter-
play of parameters immediately raises two natural questions,
which are the main focus of this work.

How many observations are needed? The problem gets
easier the larger the number of observations one has access
to (see Appendix A for a formal proof). It is also easy
to see that for t = o(log k), it is information theoretically
impossible to approximately recover the communities (since
log2 k bits are needed to encode k labels). Furthermore, as
we will see, stronger lower bounds can also be obtained.

How many observations suffice? To understand how many
observations suffice to recover the communities, it is in-
structive to consider the union graph G∗ =

⋃
`∈[t] G` of

an instance from (d,ε,k,t)-MV-SBMn, which turns out to
follow a k-communities stochastic block model with pa-
rameters d∗ = Θ(dt) , ε∗ = Θ(ε) (see Appendix A). Build-
ing on the aforementioned results, this implies that at least
t > Ω(k2/dε2) observations are needed for efficient weak
recovery of the communities from G∗! However, as we
show later, exponentially better algorithms can bridge this
gap.

1.1. Results

Weak recovery Our main algorithmic result shows that
weak recovery for (T ,k,t)-MV-SBMn can be achieved in
polynomial time with only O(log k) many observations.
Theorem 1.2 (Weak recovery for multi-view mod-
els). Let n, k > 0 . Let (z, (f1,G1), . . . (ft,Gt)) ∼
(T ,k,t)-MV-SBMn for a sequence of tuples T =

{(d`, ε`)}t`=1 , each satisfying d` · ε2
`/4 > 1. Then there

exists a constant CT > 0 depending only on T , such that
if t > Ω

(
log k
C2
T

)
, weak recovery of z in the sense of (3)

is possible. Moreover, the underlying algorithm runs in
polynomial time.

Theorem 1.2 implies that whenever the algorithm has access
to Θ(log k) observations, each above the relative Kesten-
Stigum threshold, the guarantees of the underlying algo-
rithm match the aforementioned trivial lower bound, up to
constant factors. Moreover, as we will see in Section 4, the
underlying algorithm turns out to be surprisingly simple and
efficient.

The algorithm in Theorem 1.2 applies a specialized weak-
recovery algorithm on each view G` to obtain a matrix X̂`

estimating f`(z)f`(z)T and achieving the correlation

C` 6 E
[
X̂(G)ij

∣∣∣ f`(z)i = f`(z)j

]
− E

[
X̂(G)ij

∣∣∣ f`(z) 6= f`(z)j

]
,

(4)
where C` depends only on d`, ε`. The algorithm then pro-
ceeds into processing the outputs X̂` in a blackbox fashion
to produce an estimate ẑ of z.

The constant CT in Theorem 1.2 is the average of the cor-
relations (C`)`∈[t]. It is natural to wonder whether the de-
pendency of the number of observations on CT is needed.
Moreover, as for canonical stochastic block models, it is
natural to ask what the exact phase transition of Model 1.1
is. While we leave this latter fascinating question open, our
next result shows that if we want an algorithm that processes
estimates in a blackbox fashion, then some dependency on
CT is indeed needed.

Theorem 1.3 (Lower bound for multi-view models - In-
formal). Let n, k > 0 . Let (z, (f1,G1), . . . (ft,Gt)) ∼
(T ,k,t)-MV-SBMn for a sequence of tuples T =
{(d`, ε`)}t`=1 , each satisfying d` · ε2

`/4 > 1. Assume that
for every ` ∈ [t] we have an estimate4 X̂` of f`(z)f`(z)T sat-
isfying a pair-wise correlation (as in (4)) of at leastC` > 0 ,
and let CT be the average correlation.

If t = o
(

log k
CT

)
, then by only using the estimates

X̂1, . . . , X̂t, it is information-theoretically impossible to
return a vector ẑ satisfying

P
(
R(ẑ, z) >

1

k
+ Ω(1)

)
> 0.99 . (5)

Exact recovery Another widely studied objective for
stochastic block models is that of exact recovery, where
the goal is to correctly classify all vertices in the graph

4Such estimates might be obtained by applying a blackbox
weak-recovery algorithm for SBMn,2,d,ε on each of G1, . . . ,Gt,
and which has the mentioned correlation guarantee.
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(see (Abbe et al., 2015; Mossel et al., 2015a; Abbe, 2017)
and references therein). In the context of Model 1.1 this
objective becomes

P (R(ẑ, z) = 1) > 1− o(1) . (6)

As a corollary we show that, when given access to more
views, the algorithm behind Theorem 1.2 can achieve exact
recovery.

Corollary 1.4 (Exact recovery for multi-view models).
Consider the settings of Theorem 1.2, if t > Ω

(
logn
C2
T

)
then exact recovery of z in the sense of Equation (6) is possi-
ble. Moreover, the underlying algorithm runs in polynomial
time.

Experiments Theorem 1.2 show hows, for Model 1.1,
late fusion algorithms can provide better guarantees –by
requiring an exponentially smaller number of observations
to achieve the same error in a large parameters regime–
than early fusion algorithms. We further corroborated these
findings with experiments on synthetic data in Section 5.

Organization
The rest of the paper is organized as follows. We introduce
the main ideas in Section 2. In Section 3 we introduce
our specialized weak recovery algorithm for the standard
stochastic block model. This is then used in the design of the
algorithm behind Theorem 1.2 in Section 4. Experiments are
presented in Section 5. Future directions and conclusions
are discussed in Section 6. In Appendix A we show the
limits of algorithms using the union graph. Appendix B
contains a proof of (the formal version of) Theorem 1.3.
Deferred proofs are presented in Appendix C.

Notation
We denote random variables in boldface. We hide con-
stant factors using the notation O(·),Ω(·),Θ(·) . We write
Oδ(·) ,Ωδ(·) to specify that the hidden constant may de-
pend on the parameter δ. Similarly, we sometimes write
Cδ to denote a constant depending only on δ. We further
denote the indicator function with Iverson’s brackets J·K .
Given functions f, g : R → R, we say f ∈ on(g) if
limn→∞ f(n)/g(n) = 0. Similarly we write f ∈ ωn(g)
if g ∈ on(f) . With a slight abuse of notation we often write
on(g) to denote a function in on(g). When the context is
clear we drop the subscript. In particular, we often write
o(1) to denote functions that tends to zero as n grows. We
say that an event happens with high probability if this prob-
ability is at least 1 − o(1) . For a set S ⊆ [n], we write
i
u.a.r.∼ S to denote an element drawn uniformly at random.

For a given probability distribution and a measurable event
E , we denote the probability that the event occurs by P(E) .

We denote the complement event by Ec .

For a vector v ∈ Rn, we write ‖v‖ for its Euclidean norm.
For a matrix M ∈ Rn×n, we denote by ‖M‖ its spec-
tral norm and by ‖M‖F its Frobenius norm. We also let
‖M‖1 :=

∑
ij |Mij | . We denote the i-th row of M by Mi.

For a graph G with n vertices, we denote by A(G) its adja-
cency matrix. When the context is clear we simply write A.
If the graph is directed, row Ai contains the outgoing edges
of vertex i .

For a given vector of labels z ∈ [k]n, we denote by
c1(z) . . . , ck(z) the n-dimensional indicator vectors of the
k communities defined by z. In the interest of simplic-
ity, we often denote instances (z, (f1,G1), . . . (ft,Gt))
drawn from (T ,k,t)-MV-SBMn simply by I . For z ∈ [k]n,
we also denote by (T ,k,t)-MV-SBMn(z) the distribution
of (z, (f1,G1), . . . (ft,Gt)) ∼ (T ,k,t)-MV-SBMn condi-
tioned on the event z = z . We often call z ∈ [k]n a “com-
munity vector”.

We say that an algorithm runs in time T , if in the worst case
it performs at most T elementary operations.

2. Techniques
We outline here the main ideas behind Theorem 1.2 and The-
orem 1.3. In the interest of clarity, we limit our discussion
to (d,ε,k,t)-MV-SBMn.

Behavior of the union graph The algorithm behind The-
orem 1.2 is remarkably simple and leverages known algo-
rithms for weak recovery of stochastic block models (par-
ticularly related to the robust algorithms of (Ding et al.,
2022; 2023)). As a first step, to gain intuition, it is instruc-
tive to understand why the union graph instead requires
t > Ω(k2) observations (see Theorem A.1). An instance
I of (d,ε,k,t)-MV-SBMn is given by a vector z ∈ [k]n and
a collection of t independent pairs (f1,G1) , . . . , (ft,Gt),
where each G` is sampled from SBM2,d,ε(f`(z)) . Since, by
definition, each edge {i, j} appears in G` with probability(

1 +
ε

2
· f`(z)i · f`(z)j

)
· dn , in the union graph

⋃
`∈[t] G`

the same edge appears roughly with probability

d

n
·
∑
`∈[t]

(
1 +

ε

2
· f`(z)i · f`(z)j

)
.

The intuition here is that if zi 6= zj the second term in the
sum would be close to 0, while for zi = zj it would be εt

2 .
Hence, we will see this edge in the union graph roughly
with probability

dt

n
· (1 +O(ε) · Jzi = zjK) .

That is, the union graph behaves similarly to a vanilla
stochastic block model with k communities, bias O(ε) and
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expected degree dt . As stated in the introduction, existing
efficient algorithms can achieve weak recovery for that dis-
tribution whenever (dt)ε2/k2 > Ω(1) , implying t > Ω(k2)
in the regime 4 < dε2 6 O(1) where weak recovery for
each observation is possible.

Amplifying the signal-to-noise ratio via black-box esti-
mators The above approach of taking the union graph and
then running community detection on it yields sub-optimal
guarantees because the graph does not keep all information
regarding the instance I . Our strategy to overcome this
issue is to proceed in the reverse order: first extract as much
information as possible from each graph, and then combine
the data. Concretely, in the context of (d,ε,k,t)-MV-SBMn,
our plan is to accurately estimate the matrix f`(z)f`(z)T for
each graph G` . Indeed, the polynomial

∑
`∈[t] f`(z)if`(z)j

strongly correlates with Jzi = zjK in the sense that

t =E

∑
`∈[t]

f`(z)if`(z)j

∣∣∣∣∣∣ zi = zj


>E

∑
`∈[t]

f`(z)if`(z)j

∣∣∣∣∣∣ zi 6= zj

 = 0 .

In other words, we can accurately estimate whether
zi = zj or not by accurately estimating the products∑
`∈[t] f`(z)if`(z)j . Now, we do not have access to the

functions f`(z) but we can hope (see the subsequent para-
graphs) that existing weak recovery algorithms can provide
a close enough estimate in the sense

t · Cd,ε = E

∑
`∈[t]

x̂(G`)ix̂(G`)j

∣∣∣∣∣∣ zi = zj

 (7)

> E

∑
`∈[t]

x̂(G`)ix̂(G`)j

∣∣∣∣∣∣ zi 6= zj

 = 0 .

If so, we may simply decide whether i, j should be clustered
together based on how large

∑
`∈[t] x̂(G`)ix̂(G`)j is. By

independence of the observations, standard concentration of
measure results tell us that Ω(log(n)/C2

d,ε) observations5

would suffice to exactly predict all the n2 pairs (and hence
achieve exact recovery with this number of observations).

Improvements via neighborhoods intersection Contin-
uing with the above line of thinking, one can further improve
the dependency on t to t = Θ(log k) as promised in The-
orem 1.2. For a label p ∈ [k] , let cp(z) ∈ {0, 1}n be the
indicator vector of the corresponding community. The im-
provement comes from observing that for ` 6= `′ and for
any typical labelling z (i.e. a labelling that is approximately

5This is better than Ω(k2) as long as k > Ω(
√

logn).

balanced), we have large separation between the commu-
nity indicator vectors ‖cp(z)− cp′(z)‖2 > Ω(n/k) . The
crucial consequence is that for a fixed index i ∈ [n], we
do not need to guess correctly Jzi = zjK for all j and we
may misclassify some pairs. Indeed if Ai ∈ {0, 1}n is a
vector with entries (Ai)j that accurately predicts Jzi = zjK
up to a ρ < n/k misclassification error, then we can deduce
whether i, j come from the same community by verifying if
Ai and Aj agree on the majority of their entries. Concretely,
by the reverse triangle inequality it holds that

|‖Ai −Aj‖ − ‖cp(z)− cp′(z)‖|
6 ‖cp(z)−Ai‖+ ‖cp′(z)−Aj‖ 6 O(n/k) .

That is, we are still able to exactly deduce whether i, j sit in
the same community! The improvement over t then comes
as O(log(k)/C2

δ ) observations suffice to bound the misclas-
sification error by n/k times a tiny constant. Finally, we
remark that we are bound to misclassify some vertices as for
some vertices i the estimator vector Ai will not accurately
represent its community when t 6 O(log(k)/C2

δ ) (this is
due to the well-known gap between weak recovery and ex-
act recovery in the vanilla stochastic block model (Abbe,
2017)).

The pair-wise weak recovery estimator So far, we
glossed over the fact that we do not have an algorithm return-
ing an accurate estimate x̂(G`)x̂(G`)

T of f`(z)f`(z)T given
the graph G` . Notice that for a pair (x,G) ∼ SBMn,2,d,ε,
an algorithm achieving weak recovery returns a vector
x̂(G) ∈ {±1}n such that

Ω(n2) 6 E
[
〈x̂(G),x〉2

]
6 E

[
〈x̂(G)x̂(G)T,xxT〉

]
which is enough to obtain the separation required in Equa-
tion (7). Indeed, the above implies that on average

E [x̂(G)ix̂(G)j | xi = xj]− E [x̂(G)ix̂(G)j | xi 6= xj]

> Ωd,ε(1) ,

which is enough to carry out the strategy outlined in the pre-
vious paragraphs. Notice that, a priori, it is not clear whether
these estimators should work for (d,ε,k,t)-MV-SBMn as
the model introduces some subtle difficulties compared
to SBMn,2,d,ε . Most importantly, the labels in f`(z) –and
hence the edges in G`– are not pair-wise independent.

We bypass this obstacle carrying out the analysis after con-
ditioning on the choice of f`, so that, even though the com-
munities may be unbalanced, the edges are again indepen-
dent. Now, for highly unbalanced communities the expected
degree of each vertex is an accurate predictor for its commu-
nity, hence weak recovery is easy to achieve. On the other
hand, one can treat slightly unbalanced communities as per-
turbed balanced communities and apply the node-robust
algorithm of (Ding et al., 2023).
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Remark 2.1 (Connection with (Liu et al., 2022)). Liu,
Moitra and Raghavendra studied a joint distribution model
over hypergraphs with independence edges. In the special
case of graphs, their model can be seen as a simpler version
of Model 1.1 in which every f`(·) is known, and each d` is
a constant. For this model, (Liu et al., 2022) beats random
guessing: They produce a unit vector that correlates with the
community vector better than a random vector guess would.
However, they provide no rounding strategy. The algorith-
mic techniques in (Liu et al., 2022) are very different from
ours and do not imply a result of the form of Theorem 1.2
for Model 1.1.

Information theoretic lower bounds for black-box algo-
rithms The proof of Theorem 1.3 consists of two main
steps. In the first step, we bound how much information
an estimate X̂` with pair-wise correlation C` can reveal
about z. We show that this can be bounded (in terms of
mutual information) as I(z; X̂`) 6 O(C` · n). In the sec-
ond step we use an adapted version of Fano’s inequality to
show that if ẑ is an estimate of z achieving (5), then ẑ must
have at least Ω(n · log k) bits of information about z, i.e.,
I(z; ẑ) > Ω(n · log k).

Now if ẑ is obtained by only processing (X̂`)`∈[t] , then by
using the data processing inequality, we can show that

Ω(n · log k) 6
∑
t∈[t]

I(z; X̂`)

6
∑
t∈[t]

O(C` · n) 6 O(CT · t · n) ,

where CT is the average of the correlations (C`)`∈[t] . From

this we deduce that we must have t > Ω
(

log k
CT

)
.

3. Specialized weak recovery for vanilla SBMs
General weak recovery results (Abbe, 2017) for stochastic
block models turn out to be too weak for our objective. We
rely instead on the following stronger statement, which we
obtain by exploiting the robust algorithms of (Ding et al.,
2022), (Ding et al., 2023), and which also works down to the
Kesten-Stigum threshold. This specialized estimator will be
used in the main algorithm behind Theorem 1.2.

Theorem 3.1 (Pair-wise weak recovery for unbalanced 2
communities stochastic block model). Let n, d, ε > 0 be
satisfying dε2/4 − 1 > 0 . Let x = (xi)i∈[n] ∈ {±1}n be
a sequence of i.i.d. binary random variables with P(xi =
+1) = p . There exists a polynomial time algorithm such
that, on input G ∼ SBMn,2,d,ε(x), returns with probability
1− o(1) a matrix X̂(G) ∈ [−1 ,+1]n×n satisfying ∀i, j ∈
[n]

Cd,ε 6 E
[
X̂(G)ij

∣∣∣ xi = xj

]
− E

[
X̂(G)ij

∣∣∣ xi 6= xj

]

for some constant Cd,ε > 0 .

Notice that the algorithm only receives G, d, ε and hence
it does not know p . Note also that in the above, if one of
the events xi = xj or xi 6= xj has probability 0 (i.e., if
p = 0 or p = 1), then we adopt the convention that the
corresponding conditional expectation is 0.

We defer the proof of Theorem 3.1 to Appendix C.

4. The algorithm
In this section we prove Theorem 1.2. We start by describing
the underlying algorithm. Throughout the section, for a
given t , we assume T = {(d`, ε`)}t`=1 to be a sequence
of t tuples (d`, ε`) each satisfying d` · ε2

`/4 − 1 > 0 . For
each ` ∈ [t], let C` be the weak-recovery constant that
is achievable for SBMn,d`,ε` in the sense of Theorem 3.1
(recall this constant depends only on d`, ε`) and let

C =
1

t

∑
`∈[t]

C` > 0 .

We also assume k 6 n1−Ω(1) .

Algorithm 1 Community detection for multi-view stochas-
tic block models

Input: k,G1, . . . , Gt .
Output: Community vector ẑ in [k]n .
For each G` with ` ∈ [t], run the community detection
algorithm of Theorem 3.1.
Construct the directed graph F on the vertex set [n] as
follows.
for i = 1 to n do

Add an outgoing edge to the n/k vertices j ∈ [n] with
largest

∑
`∈[t] X̂(G`)ij .

end for
Run Algorithm 2 on the adjacency matrix A of F and
return the resulting vector.

Remark 4.1 (Running time). By Theorem 3.1, the first step
of the algorithm takes time O

(
t · nO(1)

)
. Computing the

values of
∑
`∈[t] X̂(G`)ij for all pairs takes time O(t · n2) .

Drawing the edges takes time O(n2 log n). Hence the algo-
rithm runs in timeO

(
(tn)O(1) + T

)
where T is the running

time of Algorithm 2.

Graph structure on balanced instances Algorithm 1
will work on typical instances from (T ,k,t)-MV-SBMn. In
particular, it will work on instances that are approximately
balanced, as described below.
Definition 4.2 (Balanced vector). Let z ∈ [k]n . We say
that z is balanced if for all p ∈ [k] , it holds(

1− n−Ω(1)
) n
k
6 ‖cp(z)‖2 6

(
1 + n−Ω(1)

) n
k
.
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If z is balanced we also say that I ∼ (T ,k,t)-MV-SBMn(z)
is balanced.

It is immediate to see that a random instance
(z, (f1,G1), . . . (ft,Gt)) ∼ (T ,k,t)-MV-SBMn is
balanced with high probability.
Fact 4.3 (Probability of balanced instance). Let I :=
(z, (f1,G1), . . . (ft,Gt)) ∼ (T ,k,t)-MV-SBMn, . Then,
with probability 1− n−10 , I is balanced.

The proof of Fact 4.3 is straightforward and we defer it to
Appendix C.

On balanced instances with sufficiently many observations,
the adjacency matrix A of F becomes a good approximation
of the true community matrix

∑
i∈[k] ci(z)ci(z)

T.

Lemma 4.4 (Graphs structure from good instances). Let
n, k, t > 0. Let I := (z, (f1,G1), . . . (ft,Gt)). Then
Algorithm 1 constructs an adjacency matrix A such that
∀p ∈ [k] ,∀i ∈ [n]

E
[
‖Ai − cp(z)‖2

∣∣∣ zi = p
]

6 O(n) ·
(
n−Ω(1) + e−Ω(C̄2·t)

)
.

To prove Lemma 4.4 we require an intermediate step.
Fact 4.5. Consider the setting of Lemma 4.4. There exists a
constant C∗ ∈ [−t, t] such that, for i, j ∈ [n],

P

∑
`∈[t]

X̂(G`)ij < C∗ − C · t
3

∣∣∣∣∣∣ zi = zj

 6 e−Ω(C2·t) ,

P

∑
`∈[t]

X̂(G`)ij > C∗ − C · t
3

∣∣∣∣∣∣ zi 6= zj

 6 e−Ω(C2·t) .

We defer the proof of Fact 4.5 to Appendix C. We are now
ready to prove Lemma 4.4.

Proof of Lemma 4.4. Fix i ∈ [n] . We can limit our analy-
sis after conditioning on the event E(z) that z is balanced.
Indeed, we have

E
[
‖Ai − cp(z)‖2

∣∣∣ E(z)c , zi = p
]
· P (E(z))

6 O(n) · P (E(z)) 6 n−Ω(1) .

Let C∗ be the constant of Fact 4.5. Define

Bij =
∑
`∈[t]

X̂(G`)ij ,

and let A′i = (A′ij)j∈[n] be the binary vector defined as

A′ij =

s
Bij > C∗ − C̄ · t

3

{
.

Notice that ‖A′i‖1 is the number of indices j with Bij >

C∗− C̄·t
3 . Now from the definition of the binary vector Ai ,

we know that Aij = 1 if and only if Bij is among the top
n/k values in {Bij′ : j′ ∈ [n]} . From this it is not hard to
see that that ‖Ai −A′i‖1 can be bounded from above by
how much ‖A′i‖1 deviates from n/k , that is

‖Ai −A′i‖1 6
∣∣∣‖A′i‖1 − n

k

∣∣∣ .
Now assuming that E(z) holds, we have

‖cp(z)‖1 = ‖cp(z)‖2 =
n

k
± n1−Ω(1) ,

hence

‖Ai −A′i‖1 6
∣∣‖A′i‖1 − ‖cp(z)‖1∣∣+ n1−Ω(1)

6 ‖A′i − cp(z)‖1 + n1−Ω(1) .

Since cp(z) and Ai are binary vectors, we have

‖Ai − cp(z)‖2 = ‖Ai − cp(z)‖1
6 ‖Ai −A′i‖1 + ‖A′i − cp(z)‖1 ,

and hence, given E(z) , we have

‖Ai − cp(z)‖2 6 2 ‖A′i − cp(z)‖1 + n1−Ω(1) . (8)

Now notice that

|(A′i)j − cp(z)j |
= J(A′i)j = 1KJcp(z)j = 0K + J(A′i)j = 0KJcp(z)j = 1K
= J(A′i)j = 1KJzj 6= pK + J(A′i)j = 0KJzj = pK .

Now using Fact 4.5 and leveraging the fact that
P (E(z)c | zi = p) 6 O

(
n−10

)
we get

E [|(A′i)j − cp(z)j | | E(z), zi = p]

6 e−Ω(C2·t) +O
(
n−10

)
.

Combining this with (8) we conclude that

E
[
‖Ai − cp(z)‖2

∣∣∣ E(z), zi = p
]

6 O(n) ·
(
n−Ω(1) + e−Ω(C̄2·t)

)
.

Rounding Thanks to Lemma 4.4, an application of the
following rounding scheme –sometimes called second mo-
ment rounding, as one may see A as an estimate of∑
p cp(z)cp(z)

T– suffices to compute the true communities.

Remark 4.6 (Running time). Each step in the outer loop
takes time O(n2). Overall Algorithm 2 runs in O(k · n2) .
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Algorithm 2 Second moment rounding
Input: A matrix A ∈ {0, 1}n×n .
Output: Community vector ẑ in [n]k .
Let S = ∅ .
for p = 1 to k (stop earlier if S = [n]) do

Pick uniformly at random i ∈ [n] \ S . Set Sp = {i} .
for j ∈ [n] \ S , j 6= i do

Set j ∈ Sp if ‖Ai −Aj‖2 6 n
k .

end for
Add Sp to S .

end for
Assign each i ∈ [n] \ S to a set Sp, where p is chosen
uniformly at random.
Return: the vector ẑ with ẑi = p if and only if i ∈ Sp .

As first step of the proof, we introduce a new definition.

Definition 4.7 (Representative row). Let z ∈ [k]n, let
c1(z), . . . , ck(z) be the indicator vectors of the labels in
z and let A∗(z) =

∑
p cp(z)cp(z)

T . For a matrix A ∈
{0, 1}n×n , we say Ai is q-representative if

‖Ai −A∗(z)i‖2 6 n · e−q·C
2·t . (9)

We denote byRq the set of q representatives of A .

The use of representative rows is convenient because, for
sufficiently many observations, it is easy to see that rows
which are representative of the same community must be
close together, while rows that are representative of different
communities must be far from each other.

Lemma 4.8. Let n, k, t > 0 , and let q > 0 be the hid-
den constant in Lemma 4.4. Let t > C log k

C
2 for a large

enough universal constant C > 0. Let z ∈ [k]n be bal-
anced. Suppose that at each iteration of the outer loop,
Algorithm 2 picks some Ai that is a q-representative. Then
maxπ∈Pk

∑
i∈Rq(z)Jẑi = π(zi)K = |Rq| , where Pk is the

permutation group over [k] .

We defer the proof of Lemma 4.8 to Appendix C. Now,
to prove Theorem 1.2, it remains to argue that, with high
probability, first there are few non-representatives in A , and
second Algorithm 2 picks q-representatives at each iteration
of the outer loop.

Lemma 4.9. Let n, k, t > 0 , and let q > 0 be the
hidden constant in Lemma 4.4. Let t = C log k

C̄2 for a
large enough universal constant C > 0. Let I :=
(z, (f1,G1), . . . (ft,Gt)) ∼ (T ,k,t)-MV-SBMn . Let A be
the matrix constructed by Algorithm 1. On input A, with
probability at least 1− k−Ω(1), the following holds:

• there are at least n · (1− k−Ω(1)) rows in A which are
Ω(q)-representatives,

• step 1.(a) of Algorithm 2 only picks Ω(q)-
representative vectors.

Proof. By Fact 4.3 we may assume z is balanced. By
Lemma 4.4 and Markov’s inequality, with probability
1 − e−Ω(q·C2·t) there are at most O(n) · e−Ω(q·C2·t) in-
dices i ∈ [n] such that Ai is not a Ω(q)-representative. Note
that if C is large enough, then e−Ω(q·C2·t) = k−Ω(1). At
every iteration of the loop, if we pick a representative vector
we remove at most (1 + o(1))nk indices, since z is bal-
anced. Hence at each iteration there are at least nk (1− o(1))
indices that are Ω(q)-representative and which have not
yet been picked. It follows that the probability we never
pick an index that is not Ω(q)-representative is at least(

1− n·k−Ω(1)

n/k

)k
> 1 − k−Ω(1) as desired (by choosing

C to be large enough).

Theorem 1.2 now immediately follows combining Fact 4.3,
Lemma 4.4, Lemma 4.8 and Lemma 4.9.

Exact recovery Lemma 4.9 also implicitly yield exact
recovery for sufficiently many observations.

Corollary 4.10. Let n, k, t > 0 , and let q > 0 be the
hidden constant in Lemma 4.4. Let t > C logn

C̄2 for a
large enough universal constant C > 0. Let I :=
(z, (f1,G1), . . . (ft,Gt)) ∼ (T ,k,t)-MV-SBMn . Let A be
the matrix constructed by Algorithm 1. On input A, with
probability at least 1 − n−Ω(1), all rows in A are Ω(q)-
representatives.

Proof. By Lemma 4.4 and Markov’s inequality, with proba-
bility 1 − e−Ω(q·C2·t) there are at most O(n) · e−Ω(q·C2·t)

indices i ∈ [n] such that Ai is not a Ω(q)-representative.
Therefore, for t > C

C̄2 log n no such index exists.

Since by Lemma 4.8 only indices corresponding to rows
that are not Ω(q)-representative can be misclassified, by
Fact 4.3, Lemma 4.4, Lemma 4.9 and Corollary 4.10 we
obtain Corollary 1.4.

5. Experiments
We show here experiments on synthetic data sampled from
(d,ε,k,t)-MV-SBMn . The estimator in Theorem 3.1 is com-
plex and relies on a high order sum-of-squares program,
making it hard to implement in practice. Nevertheless, it is
reasonable to believe that: (i) the guarantees of Theorem 3.1
are only sufficient, but not necessary, to obtain Theorem 1.2;
(ii) other estimators provide the guarantees of Theorem 3.1.
For this reason, it makes sense to test Algorithm 1 with other
community detection algorithms.
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The next figures compares the results on
(z, (f1,G1), . . . , (ft,Gt)) ∼ (d,ε,k,t)-MV-SBMn (for
a wide range of parameters) of the following algorithms:

A.1 Louvain’s algorithm (Blondel et al., 2008) on the union
graph

⋃
i∈[t] Gt .

A.2 Algorithm 1 with Louvain’s algorithm applied in place
of the estimator of Theorem 3.1 .

The y-axis measures agreement as defined in Equation (2).
Results are averaged over 20 simulations.

Figure 1. Fixing t = 10, n = 1000, k = 10, d = 50 and varying
ε in [0.5, 1.5].

Figure 2. Fixing t = 10, n = 1000, k = 10, ε = 0.5 and varying
d in [50, 150].

6. Conclusions and future directions
The introduction of Model 1.1 raises several natural ques-
tions, for which we only provide initial answers.

On the phase transition threshold One of the most inter-
esting question concerns the phase transition of the model.
Concretely, one may expect a rich interplay between the

signal-to-noise ratio of each of the observed graphs (pos-
sibly below the relative KS threshold) and the number of
observations required to weakly recover the hidden vector z.
We leave the characterization of this trade-off beyond Theo-
rem 1.2 and Theorem 1.3 as a fascinating open question.

From 2 communities to k communities in the multi-view
model Another natural question concern the generaliza-
tion to a model in which each view may have 2 6 k` 6 k
communities. The ideas outlined above translate in princi-
ple to these settings but the correctness appears difficult to
prove. Concretely, any estimator achieving guarantees com-
parable to Theorem 3.1 but for more than 2 communities
can immediately be plugged-in Algorithm 1 to achieve weak
recovery in these more general settings.6 However, to the
best of our knowledge existing weak-recovery algorithms
for SBMn,k,d,ε do not lead to estimators of this form.

A first obstacle appears to be the fact that for each dis-
tribution the labels f`(z)1 . . . , f`(z)n are not independent.
Existing estimators for stochastic block models instead cru-
cially relies on the independence of the labels. Notice that
independence holds when conditioning on f` but due to the
high variance of random [k]→ [k′] mappings, an argument
along these lines would require an analysis for communities
whose distribution is not known a priori. This makes each
observation G` more akin to a stochastic block model with
unknown parameters. These models have been studied in
(Abbe & Sandon, 2015) in the context of partial recovery
and exact recovery but are not known to achieve the notion
of weak recovery we require.

A second obstacle arising from the current proof structure is
that existing robust algorithm for weak recovery –which are
used in Theorem 3.1– are only known to work for k = 2 .
But a generalization of these algorithms to k > 2 appears
to be difficult to analyze (the current proofs is already more
than 200 pages long! (Ding et al., 2022)). Hence, it remains
open how to provide guarantees for more general models.
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A. Failure of community detection on the union graph
In this section we provide rigorous evidence that efficient algorithm cannot achieve comparable guarantees to Theorem 1.2
by only considering the union graph

⋃
i∈[t] Gi for (z, (f1,G1), . . . (ft,Gt)) ∼ (d,ε,k,t)-MV-SBMn. Concretely, we prove

the following theorem.

Theorem A.1 (Limits of weak recovery from the union graph). Let n, k, d, ε > 0, assume that t > 100 · (log k)2, and let
I := (z, (f1,G1), . . . (ft,Gt)) ∼ (d,ε,k,t)-MV-SBMn. With probability at least 1− k−Ω(1) over the draws of f1, . . . , ft,
the conditional distribution over (z ,G1, . . . ,Gt) satisfies:

• z is drawn uniformly at random from [k]n;

• each edge ij appears (independently) in
⋃
i∈[t] Gi with probability at most d

∗

n (1+(1− 1
k )ε∗) if zi = zj and probability

at least d
∗

n (1− ε
k ) otherwise, for some d∗, ε∗ such that

dt ·
1 + ε

2

1 +
(
1− 1

k

)
ε∗

6 d∗ 6 dt ·
1 + ε∗

1−ε∗/k

1 +
(
1− 1

k

)
ε∗
− o(1) .

In words, Theorem A.1 shows that the union graph
⋃
i∈[t] Gi is essentially a k-community stochastic block model with

parameters d∗ = Θ(dt) , ε∗ = Θ(ε) . As discussed in Section 1, it is conjecturally hard to achieve weak recovery in
polynomial time for d∗(ε∗/k)2 6 1 . In the context of Theorem A.1, this implies that the parameters of the distribution of⋃
i∈[t] Gi are above the Kesten-Stigum threshold only for d∗(ε∗/k)2 > Ω(1). That is, at least t > Ω(k2) observations are

required!

Next we prove the theorem.

Proof of Theorem A.1. Let q, q′ ∈ [k] be distinct. By Chernoff’s bound and choice of t we have7

P

 t

2
(1− o(1)) 6

∑
`∈[t]

Jf`(q) = f`(q
′)K 6

t

2
(1 + o(1))

 > 1− k−5 . (10)

Hence we may take a union over all such pairs q, q′ ∈ [k] as the corresponding event E will hold with probability at
least 1 − k−O(1) . So let f1 . . . , ft : [k] → ±1 be fixed functions verifying the event E of (10). We condition the rest of
the analysis on f1 = f1, . . . , ft = ft . In these settings each edge appears in G∗ :=

⋃
i∈[t] Gi independently of others.

Moreover, by union bound

P (ij ∈ G∗ | zi = zj , f1 = f1, . . . , ft = ft) 6
(

1 +
ε

2

) dt
n
,

and

P (ij ∈ G∗ | zi 6= zj , f1 = f1, . . . , ft = ft)

> 1−
(

1−
(

1 +
ε

2

) d
n

) t
2 (1−o(1))(

1−
(

1− ε

2

) d
n

) t
2 (1+o(1))

> 1−
(

1−
(

1 +
ε

2

) dt
2n

(1− o(1))

)(
1−

(
1− ε

2

) dt
2n

(1 + o(1))

)
> (1− o(1))

dt

n
,

where we used the inequality (1 + s)r > 1 + rs , for r > 1 , s > −1 . It remains to compute d∗ and ε∗ so that(
1 +

ε

2

) dt
n

6
d∗

n

(
1 +

(
1− 1

k

)
ε∗
)
,

7We can take o(1) to be t−1/4 and by Hoeffding’s inequality we can bound the probability of the event E in (10) not happening by
2 exp(−

√
t) 6 2 exp(−10 log k) 6 k−5.
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(1− o(1))
dt

n
>
d∗

n

(
1− ε∗

k

)
.

Rearranging the inequalities,

d∗ > dt ·
1 + ε

2

1 +
(
1− 1

k

)
ε∗
,

d∗ 6 dt · 1

1− ε∗

k

− o(1) = dt ·
1 + ε∗k

k−ε∗

1 +
(
1− 1

k

)
ε∗
− o(1)

as desired.

Remark A.2 (On the weighted union graph). A natural question to ask is whether the weighted union graph – the
graph over [n], in which edge ij has weight

∑
`∈[t]Jij ∈ G`K– could provide better guarantees. In the sparse settings

d 6 no(1) , t 6 no(1) only a no(1)−1 fraction of the edges have weight larger than 1 and thus one may expect that this
additional information does not simplify the problem.

B. Information theoretic lower bound for blackbox algorithms
In this section we would like to study, in the context of (T ,k,t)-MV-SBMn, the information-theoretic limitations for having
an algorithm that (i) runs the procedure in Theorem 3.1 on each observation and (ii) uses the resulting matrices (X̂`)`∈[t] to
reconstruct the original k communities. Essentially, we would like to prove a formal version of Theorem 1.3. In order to do
this, we first need to introduce some useful notation and terminology.

Throughout the section let z ∈ [k]n be the vector of communities, and let (f`)`∈[t] be t independent and uniformly distributed
random mappings [k] → {+1,−1}. For every ` ∈ [t] let x` = f`(z) and let G` ∼ SBMn,2,d`,ε`(f`(z)). We introduce a
quantitative version of weak-recovery.

Definition B.1 (α`-weak-recovery algorithm). We say that an algorithm8 X̂` taking G` as input and producing an estimate
X̂`(G`) ∈ [+1,−1]n×n of x`x`T is an α`-weak-recovery algorithm if we have

E
[
X̂`(G)ij

∣∣∣ (x`)i = (x`)j

]
− E

[
X̂(G)ij

∣∣∣ (x`)i 6= (x`)j

]
> α` , ∀i, j ∈ [n] . (11)

Clearly, the algorithm mentioned in Theorem 3.1 is a Cd,ε-weak-recovery algorithm.

We are interested in determining the information-theoretic limits for estimating z based only on the outputs of an α`-weak-
recovery algorithm when applied on the observations (G`)`∈[t]. To this end, let us introduce blackbox estimators:

Definition B.2 (Blackbox estimator). A blackbox estimator for z is a mapping

ẑ : ([+1,−1]n×n)t → [k]n .

The blackbox estimator is applied as follows: For every ` ∈ [t] , we first compute X̂` = X̂`(G`) , for some α-weak-recovery
algorithm X̂` for x` for which we do not know anything about except that it is an α-weak-recovery algorithm, and then
compute ẑ = ẑ(X̂1, . . . , X̂t).

We would like to guarantee that the blackbox estimator yields a successful weak-recovery of z using only the fact that
X̂` = X̂`(G`) satisfies (11) for every ` ∈ [t]. In order to formalize this, we will use the notion of α-estimates:

Definition B.3 (α-estimates). Let α = (α`)`∈[t] ∈ (0, 2]t be a sequence of t positive numbers. Let X̂1, . . . , X̂t ∈
[+1,−1]n×n be t random matrices. We say that (X̂`)`∈[t] are α-estimates of (x`x`

T)`∈[t] if they satisfy the following three
conditions:

(a) Given (x`)`∈[t], the random matrices (X̂`)`∈[t] are conditionally independent from z.

(b) For every ` ∈ [t], given x`, the random matrix X̂` is conditionally independent from
(x1, . . . ,x`−1,x`+1, . . . ,xt, X̂1, . . . , X̂`−1, X̂`+1, . . . , X̂t).

8Note that X̂` may be a randomized algorithm.
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(c) For every ` ∈ [t] and every i, j ∈ [n] with i 6= j we have

E
[
(X̂`)ij

∣∣∣ (x`)i = (x`)j

]
− E

[
(X̂`)ij

∣∣∣ (x`)i 6= (x`)j

]
> α` , ∀i, j ∈ [n] . (12)

It is not hard to see that if X̂` is an α`-weak-recovery algorithms for every ` ∈ [t], then (X̂(G`))`∈[t] are α-estimates of
(x`x`

T)`∈[t].

Now we are ready to formally define what we mean by “guaranteeing that the blackbox estimator yields a successful
weak-recovery of z using only the fact that X̂` = X̂(G`) satisfies (11) for every ` ∈ [t]”:
Definition B.4 ((ρ, τ, α, t)-weak-recovery blackbox estimator). Let α = (α`)`∈[t] ∈ (0, 2]t be a sequence of t positive
numbers, and let ρ > 0 and τ > 0 .

A mapping9

ẑ : ([−1,+1]n×n)t → [k]n

is said to be a (ρ, τ, α, t)-weak-recovery blackbox estimator for z from α-estimates of (x`x`
T)`∈[t] if for every t random

matrices (X̂`)`∈[t] which are α-estimates of (x`x`
T)`∈[t], if

z = ẑ(X̂1, . . . , X̂t) ,

then with probability at least τ we have

max
π∈Pk

∑
i

1

n
Jzi = π(ẑi)K >

1

k
+ ρ , (13)

where Pk is the set of permutations [k]→ [k] .

We are now ready to state the main theorem of the section, which implies Theorem 1.3.
Theorem B.5 (Formal statement of Theorem 1.3). Let α = (α`)`∈[t] ∈ (0, 2]t be a sequence of t positive numbers and
denote

α =
1

t

∑
`∈[t]

α` .

Let ρ > 0 and τ > 0 . Let z ∈ [k]n be the uniformly random vector of communities, and let (f`)`∈[t] be t independent
and uniformly distributed random mappings [k] → {+1,−1}. For every ` ∈ [t] let x` = f`(z). If there exists a
(ρ, τ, α, t)-weak-recovery blackbox estimator for z from α-estimates of (x`x`

T)`∈[t] , and if n is large enoug, then we must
have

t > Ωρ

(
τ · log k

α

)
.

We prove Theorem B.5 in Appendix B.1, Appendix B.2, and Appendix B.3. We conclude this section showing how
Algorithm 1 is indeed a blackbox estimator.

Proof that Algorithm 1 is a blackbox estimator. We can split Algorithm 1 into two steps:

(1) Computing X̂1 = X̂1(G1), . . . , X̂t = X̂t(Gt) by applying the algorithm in Theorem 3.1 to G1, . . . ,Gt , respectively.

(2) Computing an estimate ẑ of z based only on (X̂`)`∈[t] .

In step (1), since each of X̂` is applied to G` independently of all other graphs and since G` depends on z only through
x` , it is not hard to see that (X̂`)`∈[t] satisfy conditions (a) and (b) of Definition B.3. Now if α` = C` is the correlation
guaranteed by Theorem 3.1 for X̂` , it follows that (X̂`)`∈[t] are α-estimates of (x`x`

T)`∈[t] , where α = (α`)`∈[t] .

Now since step (2) of Algorithm 1 only processes (X̂`)`∈[t] , and since the guarantee on the agreement of ẑ with z is
proved based only on the fact that (X̂`)`∈[t] are α-estimates, we can see that, assuming that t is a large enough multiple of
(log k)/α2 , step (2) is a (1− k−Ω(1), 1− k−Ω(1), α, t)-weak-recovery blackbox estimator.

9Note that ẑ may be a randomized function.
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B.1. Upper bound on the information revealed by α-estimates

The first step in our proof is to determine how much information about z the α-estimates can reveal. Let (X̂`)`∈[t] be
α-estimates of (x`x`

T)`∈[t]. The mutual information (measured in bits) between z and X̂1, . . . , X̂t can be upper bounded
as follows:

I(z; X̂1, . . . , X̂t)
(∗)
6 I(x1, . . . ,xt; X̂1, . . . , X̂t)

= H(X̂1, . . . , X̂t)−H(X̂1, . . . , X̂t|x1, . . . ,xt) ,
(14)

where (∗) follows from the data-processing inequality10.

The entropy H(X̂1, . . . , X̂t) can be upper bounded as follows:

H(X̂1, . . . , X̂t) 6
∑
`∈[t]

H(X̂`) . (15)

Now using the chain rule, the conditional entropy H(X̂1, . . . , X̂t|x1, . . . ,xt) can be rewritten as follows:

H(X̂1, . . . , X̂t|x1, . . . ,xt) =
∑
`∈[t]

H(X̂`|x1, . . . ,xt, X̂1, . . . , X̂`−1)

=
∑
`∈[t]

H(X̂`|x`) ,
(16)

where the last equality follows from Property (b) of α-estimates.

Combining (14), (15) and (16) we get

I(z; X̂1, . . . , X̂t) 6
∑
l∈[t]

(
H(X̂`)−H(X̂`|x`)

)
=
∑
l∈[t]

I(x`; X̂`)
(17)

Now for each ` ∈ [t], we will derive an upper bound on I(x`; X̂`) (which would then induce an upper bound on
I(z; X̂1, . . . , X̂t)). Note that we cannot obtain a non-trivial upper bound on I(x`; X̂`) for arbitrary α-estimates because
setting X̂` = x`x`

T would satisfy the definition of α-estimates, and for X̂` = x`x`
T we have I(x`; X̂`) = n , which is too

large for our purposes. What we will do instead is to show that there exist α-estimates for which we can get the desired
upper bound on I(x`; X̂`).

The α-estimates that we will consider are of the form X̂` = x̂`x̂`
T where x̂` ∈ {+1, 1}n is defined as follows:

P (x̂` = x̂`|x` = x`) =
∏
i∈[n]

P ((x̂`)i = (x̂`)i|(x`)i = (x`)i) ,

where

P ((x̂`)i = (x̂`)i | (x`)i = (x`)i) =

{
1
2 +

√
α`
8 if (x̂`)i = (x`)i ,

1
2 −

√
α`
8 if (x̂`)i = −(x`)i .

In other words, we obtain x̂` by sending the entries of x` through a binary symmetric channel with flipping probability
1
2 −

√
α`
8 .

10Notice that due to Property (a) of α-estimates, z− (x`)`∈[t] − (x̂`)`∈[t] is a Markov chain.
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Now notice that

E [(x̂`)i | (x`)i] = (x`)i · P ((x̂`)i = (x`)i | (x`)i)− (x`)i · P ((x̂`)i = −(x`)i | (x`)i)

= 2

√
α`
8

(x`)i =

√
α`
2

(x`)i .

Hence, for i 6= j

E
[
(X̂`)i,j

∣∣∣ (x`)i, (x`)j

]
= E [(x̂`)i · (x̂`)j | (x`)i, (x`)j ]

= E [(x̂`)i | (x`)i]E [(x̂`)j | (x`)j ]

=

√
α`
2

(x`)i ·
√
α`
2

(x`)j =
α`
2

(x`)i · (x`)j ,

from which it is not hard to see that

E
[
(X̂`)i,j

∣∣∣ (x`)i = (x`)j

]
− E

[
(X̂`)i,j

∣∣∣ (x`)i = −(x`)j

]
=
α`
2
−
(
−α`

2

)
= α` .

This proves that our choice of (X̂`)`∈[t] indeed yields α-estimates. In the remainder of this subsection we will show that
this particular choice of α-estimates is noisy enough to yield a useful upper bound on the mutual information I(x`; X̂`) .

For every ` ∈ [t] we have

I(x`; X̂`) = I(x`; x̂`) = H(x̂`)−H(x̂`|x`) 6 n−H(x̂`|x`) , (18)

where the first equality follows from the fact that there is a one-to-one mapping between x̂` and X̂` = x̂`x̂`
T , and the last

inequality follows from the fact that x̂` ∈ {+1,−1}n is a binary vector of length n .

Now notice that the conditional distribution of x̂` given x` can be seen as a sequence of n independent Bernoulli random
variables with parameter 1

2 ±
√

α`
8 . Therefore11,

H(x̂`|x`) = n · h2

(
1

2
+

√
α`
8

)
, (19)

where
h2(p) = −p log2 p− (1− p) log2(1− p)

is the binary entropy function.

Combining (18) and (19), we get

I(x`; X̂`) 6 n ·
(

1− h2

(
1

2
+

√
α`
8

))
.

Now note that the function p 7→ h2(p) is a strictly concave function achieving its maximum at p = 1
2 for which we have

h2(p) = 1. Therefore, for small α` , we have

1− h2

(
1

2
+

√
α`
8

)
=
h′′2(1/2)

2

(√
α`
8

)2

±O
(√

α`
8

)3

6 O(α`) .

We conclude that there exists an absolute constant C > 0 such that

I(x`; X̂`) 6 C · α` · n .

Combining this with (17), we conclude that for some α-estimates (X̂`)`∈[t] of (xxT` )`∈[t], we have

I(z; X̂1, . . . , X̂t) 6
∑
`∈[t]

C · α` · n = C · α · t · n . (20)

11Notice that h2(p) = h2(1− p) and hence h2

(
1
2

+
√

α`
8

)
= h2

(
1
2
−
√

α`
8

)
.
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B.2. Weakly recovering z reduces its entropy

Now let ẑ ∈ [k]n be an estimate of z which satisfies (13) with probability at least τ . We will apply a modified version of the
standard Fano inequality in order to upper bound H(z|ẑ). Define the random variable

A =

{
1 if z and ẑ satisfy (13) ,
0 otherwise .

We have

H(z|ẑ) 6 H(A, z|ẑ)

= H(A|ẑ) +H(z|ẑ,A)

6 H(A) +H(z|ẑ,A = 0)P[A = 0] +H(z|ẑ,A = 1)P[A = 1]

6 1 + (n log2 k) · P[A = 0] +H(z|ẑ,A = 1) · P[A = 1] ,

where the last inequality follows from the fact that A is a binary random variable (and hence its entropy is at most one bit),
and the fact that z ∈ [k]n, which implies that H(z|ẑ,A = 0) 6 log2 (kn) = n log2 k. We conclude that

H(z|ẑ) 6 1 + n log2 k − (n log2 k −H(z|ẑ,A = 1)) · P[A = 1]

6 1 + n log2 k − τ · (n log2 k −H(z|ẑ,A = 1)) ,

where the last inequality follows from the fact that P[A = 1] > τ and the fact that n log2 k −H(z|ẑ,A = 1) > 0 (because
z ∈ [k]n). Now since z is a uniform random variable in [k]n, we have H(z) = log2 (kn) = n log2 k , and hence

I(z; ẑ) = H(z)−H(z|ẑ)

> τ · (n log2 k −H(z|ẑ,A = 1))− 1 .
(21)

Now we will focus on upper bounding H(z|ẑ,A = 1). For every ẑ ∈ [k]n, we have

H(z|ẑ = ẑ,A = 1) 6 log2 |Z(ẑ, ρ)| , (22)

where

Z(ẑ, ρ) =

{
z ∈ [k]n : max

π∈Pk

∑
i

1

n
Jzi = π(ẑi)K >

1

k
+ ρ

}
=
⋃
π∈Pk

Z(ẑ, ρ, π) ,

and

Z(ẑ, ρ, π) =

{
z ∈ [k]n :

∑
i

1

n
Jzi = π(ẑi)K >

1

k
+ ρ

}
.

Hence,
|Z(ẑ, ρ)| 6

∑
π∈Pk

|Z(ẑ, ρ, π)| .

We will further divide Z(ẑ, ρ, π) as follows:

Z(ẑ, ρ, π) =
⋃

βn6m6n

Z(ẑ, ρ, π,m) ,

where
β =

1

k
+ ρ ,

and

Z(ẑ, ρ, π,m) =

{
z ∈ [k]n :

∑
i

Jzi = π(ẑi)K = m

}
.
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It is not hard to see that

|Z(ẑ, ρ, π,m)| =
(
n

m

)
· (k − 1)n−m .

By defining βm = m
n and using Stirling’s formula12, we get:

log2 |Z(ẑ, ρ, π,m)| = n log2 n− n log2 e

−m log2m+m log2 e− (n−m) log2(n−m) + (n−m) log2 e

±O(log n) + (n−m) log2(k − 1)

= n log2 n− βmn log2(βmn)− (1− βm)n log2((1− βm)n)

+ (1− βm)n log2(k − 1)±O(log n)

= (h2(βm) + (1− βm) · log2(k − 1)) · n±O(log n) .

By taking derivatives and analyzing the function g(βm) = h2(βm) + (1 − βm) · log2(k − 1), we can show that g is
decreasing after βm > 1

k , and hence for βm > β = 1
k +ρ > 1

k , we have g(βm) 6 g(β). In particular, for every m satisfying
βn 6 m 6 n, we have

log2 |Z(ẑ, ρ, π,m)| 6 (h2(β) + (1− β) · log2(k − 1)) · n+O(log n) .

Therefore,

|Z(ẑ, ρ)| 6
∑
π∈Pk

∑
βn6m6n

|Z(ẑ, ρ, π,m)|

6
∑
π∈Pk

∑
βn6m6n

2(h2(β)+(1−β)·log2(k−1))·n+O(logn)

= k! · n · 2(h2(β)+(1−β)·log2(k−1))·n+O(logn) ,

and hence

log2 |Z(ẑ, ρ)| 6 (h2(β) + (1− β) · log2(k − 1)) · n+O(k log k + log n) .

Since this is true for every ẑ ∈ [k]n, we get from (22) that

H(z|ẑ,A = 1) 6 (h2(β) + (1− β) · log2(k − 1)) · n+O(k log k + log n) .

Combining this with (21), we get

I(z; ẑ) > τ (n log2 k − (h2(β) + (1− β) · log2(k − 1))n−O(log n+ k log k))− 1

>
τ · n

2
(log2 k − h2(β)− (1− β) · log2(k − 1)) ,

(23)

where the last inequality assumes13 that n is large enough (and in particular n� k log k).

B.3. Putting everything together

Proof of Theorem B.5. Assume that there is a (ρ, τ, α, t)-weak-recovery blackbox estimator ẑ for z and assume that n is
large enough. Let (X̂`)`∈[t] be α-estimates of (x`)`∈[t] satisfying (20), i.e.,

I(z; X̂1, . . . , X̂t) 6 C · α · t · n .

Let ẑ = ẑ(X̂1, . . . , X̂`). From the data-processing inequality, we have

I(z; ẑ) 6 I(z; X̂1, . . . , X̂t) 6 C · α · t · n .
12For large n, we have log2(n!) = n log2 n− n log2 e±O(log2 n).
13It is worth noting that if β > 1/k , then log2 k − h2(β)− (1− β) · log2(k − 1) > 0 , as we will show in the next subsection.
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On the other hand, since ẑ is a (ρ, τ, α, t)-weak-recovery blackbox estimator and since (x̂`)`∈[t] are α-estimates of (x`)`∈[t],
it follows that ẑ satisfies (13) with probability 1− τ . It follows from (23) that for n large enough, we have

I(z; ẑ) >
τ · n

2
· (log2 k − h2(β)− (1− β) · log2(k − 1)) .

We conclude that
τ · n

2
· (log2 k − h2(β)− (1− β) · log2(k − 1)) · n 6 C · α · t · n .

Therefore, we must have

t > τ · log2 k − h2(β)− (1− β) · log2(k − 1)

2C · α
.

Now define

l(β) = log2 k − h2(β)− (1− β) · log2(k − 1)

= log2 k + β log2 β + (1− β) log2(1− β)− (1− β) · log2(k − 1) ,

so that

t >
τ · l(β)

2C · α
=
τ · l(1/k + ρ)

2C · α
.

Let us analyze the function l(β):

• A quick calculation shows that
l(1/k) = 0 .

• The derivative of l is

l′(β) = log2 β +
1

ln 2
− log2(1− β)− 1

ln 2
+ log2(k − 1)

= log2 β − log2(1− β) + log2(k − 1) ,

and hence
l′(1/k) = 0 .

• The second derivative of l is

l′′(β) =
1

β ln 2
+

1

(1− β) ln 2
> 0 , ∀β ∈ (0, 1) .

Hence, l′(β) > 0 for β ∈ (1/k, 1) , and since l(1/k) = 0 we can see that l(1/k + ρ) > 0 whenever ρ > 0 . Furthermore, a
quick calculation reveals that for fixed ρ we have14

lim
k→∞

l(1/k + ρ)

log2(k)
= ρ > 0 ,

which means that

min
k>2

l(1/k + ρ)

log2(k)
> 0 ,

and hence l(1/k + ρ) = Ωρ(log2(k)) . We conclude that

t > Ωρ

(
τ · log k

α

)
.

14Note that β log2 β + (1 − β) log2(1 − β) = −h2(β) and since 0 6 h2(β) 6 1 , we can see that limk→∞
h2(β)
log2(k)

= 0 . Hence

limk→∞
l(1/k+ρ)
log2(k)

can be simplified as limk→∞ 1− (1− ρ− 1
k

) log2(k−1)

log2(k)
= ρ .
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C. Deferred proofs
We present here proofs deferred in the main body of the paper.

Deferred proofs of Section 3 .

To obtain Theorem 3.1 we need to introduce results about robust weak recovery.

Definition C.1 (µ-node corrupted, balanced 2 communities SBM). Let µ ∈ [0, 1] . Let x ∈ {±1}n be a vector satisfying∑
i xi = 0 and let G0 ∼ SBM2,d,ε(x) . An adversary may choose up to µ · n vertices in G0 and arbitrarily modify edges

(and non-edges) incident to at least one of them to produce the corrupted graph G. We write G
µ
≈ G0 to denote that G is a

µ-node corrupted version of G0.

In the context of node corrupted graphs, the definition of weak recovery is still with respect to the original vector x as
defined in Equation (1). It is known that node robust weak recovery is achievable.

Theorem C.2 (Implicit in (Ding et al., 2023)). Let n, d, ε > 0 be satisfying d · ε2 − 1 =: δ > 0 . There exist:

• constants 0 < µδ < 1 and 0 < Cδ < 1 , and

• a (randomized) polynomial time algorithm15 X̂r taking a graph G of n vertices as input and producing a matrix
X̂r(G) ∈ [−1,+1]

n×n as output,

such that X̂r is a successful weak-recovery recovery algorithm robust against any µ-node corruption for all µ 6 µδ . More
formally, for every x ∈ {±1}n satisfying

∑
i xi = 0 , and every µ 6 µδ , we have

E
G0∼SBM2,d,ε(x)

[
min

G:G
µ
≈G0

〈X̂r(G), xxT〉

]
> Cδ · n2 .

We can use Theorem C.2 to obtain Theorem 3.1.

Let γ =
∣∣p− 1

2

∣∣ be the unbalancedness in the vector of labels of x, where p = P(xi = +1).

The main idea behind the algorithm in Theorem 3.1 is to first distinguish whether the unbalancedness γ is sufficiently
small or not. If it is sufficiently small, then we apply the robust algorithm of Theorem C.2. Otherwise, we can achieve
weak-recovery by relying on the degree of a vertex to estimate its community label.

In the following two lemmas, we treat the case where the unbalancedness γ is sufficiently small:

Lemma C.3. Let n, d, ε, p,x = (xi)i∈[n] and G ∼ SBMn,2,d,ε(x) be as in Theorem 3.1 and let δ = ε2d
4 − 1 > 0. Let

µδ, Cδ and X̂r be16 as in Theorem C.2 and define

µ′δ =
1

100
min{µδ, Cδ} .

If the unbalancedness γ =
∣∣ 1

2 − p
∣∣ of x satisfies γ 6 µ′δ , then for n large enough, we have

E
[
〈X̂r(G),xxT〉

]
>

3

4
Cδ · n2 .

Proof. For the sake of simplicity, we will only treat the case where n is even. Since X̂r is robust against node corruptions, it
is not hard to see that the proofs can be adapted to the case where n is odd.

15The subscript r in X̂r stands for “robust”.
16It is worth noting that since Theorem C.2 assumes that

∑
i xi = 0 , then n must be even in Theorem C.2. However, in Lemma C.3

we would like n to be general. Hence, if n is odd, we apply the following procedure: (1) we add a fictitious vertex n+ 1 which is not
incident to any vertex in [n] and we call the resulting graph (having [n+ 1] as its set of vertices) as G̃ , (2) we apply X̂r on G̃ , and (3)
we take the submatrix of X̂r(G̃) induced by the vertices in [n]. We still denote the overall algorithm as X̂r.
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For every x ∈ {±}n, let n+(x) = |{i ∈ [n] : xi = +1}| and n−(x) = |{i ∈ [n] : xi = −1}|. Since P(xi = +1) = p, then
by the law of large numbers we know that n+(x) and n−(x) concentrate around pn and (1−p)n, respectively. Furthermore,
since γ =

∣∣ 1
2 − p

∣∣ 6 µ′δ , we can use standard concentration inequalities to show that with probability at least 1−O(n−10),
the random vector x satisfies the event

E =

{
x ∈ {±}n :

∣∣∣∣n+(x)

n
− 1

2

∣∣∣∣ 6 2µ′δ and
∣∣∣∣n−(x)

n
− 1

2

∣∣∣∣ 6 2µ′δ

}
.

Now since P(x ∈ E) = 1−O(n−10) and since
∣∣∣〈X̂r(G),xxT〉

∣∣∣ 6 n2, it is not hard to see that

E
[
〈X̂r(G),xxT〉

]
= E

[
〈X̂r(G),xxT〉

∣∣∣ x ∈ E]± o(1) , (24)

so we can focus on studying E
[
〈X̂r(G),xxT〉

∣∣∣ x ∈ E].
Now fix x ∈ E and condition on the event that x = x. From the definition of E it is not hard to see that there is x′ ∈ {±}n
satisfying

∑
i∈[n] x

′
i = 0 and

|Dx,x′ | 6 4µ′δn ,

where
Dx,x′ = |i ∈ [n] : xi 6= x′i| .

Now construct a random graph G′ as follows:

• If i, j ∈ [n] \Dx,x′ , i.e., if xi = x′i and xj = x′j , then we let {i, j} ∈ G′ if and only if {i, j} ∈ G.

• If either i ∈ Dx,x′ or j ∈ Dx,x′ then we put the edge {i, j} in G′ with probability d
n

(
1 + ε

2x
′
i · x′j

)
.

• The events ({i, j} ∈ G′)i,j∈[n] are mutually independent.

It is not hard to see that:

• G′ ∼ SBMn,2,d,ε(x
′) , and

• G
4µ′δ≈ G′ , i.e., G can be obtained from G′ by adding or removing edges incident to at most 4µ′δn vertices.

Since 4µ′δ 6
4

100µδ 6 µδ , it follows from Theorem C.2 that

E
[
〈X̂r(G), x′x′T〉

∣∣∣ x = x
]
> Cδ · n2 . (25)

Now notice that

〈X̂r(G), xxT〉 = 〈X̂r(G), x′x′T〉+ 〈X̂r(G), xxT − x′x′T〉 ,

and ∣∣∣〈X̂r(G), xxT − x′x′T〉
∣∣∣ 6 ∥∥∥X̂r(G)

∥∥∥
∞
·
∥∥xxT − x′x′T∥∥

1
6 1 ·

∥∥xxT − x′x′T∥∥
1

6 2 ‖x− x′‖1 · n = 4|Dx,x′ | · n 6 16µ′δ · n2 .

Combining this with (25), we get

E
[
〈X̂r(G), xxT〉

∣∣∣ x = x
]
> (Cδ − 16µ′δ) · n2 >

84

100
Cδ · n2 .
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Now since this is true for all x ∈ E , we conclude that

E
[
〈X̂r(G),xxT〉

∣∣∣ x ∈ E] > (Cδ − 16µ′δ) · n2 >
84

100
Cδ · n2 ,

where the last inequality is true because µ′δ = 1
100 min{µδ, Cδ}. Combining the above with (24), we can deduce that for n

large enough, we have

E
[
〈X̂r(G),xxT〉

]
>

3

4
Cδ · n2 .

The following lemma takes the algorithm of Lemma C.3 and applies a symmetrization argument in order to get “a positive
correlation at the edge level”.

Lemma C.4 (Pair-wise weak recovery for sufficiently balanced 2 communities stochastic block mode). Let n, d, ε, p,x =

(xi)i∈[n] and G ∼ SBMn,2,d,ε(x) be as in Theorem 3.1. Let δ = ε2d
4 − 1 > 0 and let γ =

∣∣ 1
2 − p

∣∣ be the unbalancedness
of x. There exist constants µ′δ > 0 and C ′δ > 0 and a randomized polynomial-time algorithm17 X̂sb taking G as input and
producing a matrix X̂sb(G) ∈ [−1,+1]n×n such that if

γ 6 µ′δ ,

then for every i, j ∈ [n] with i 6= j, we have

C ′δ 6 E
[
X̂sb(G)ij

∣∣∣ xi = xj

]
− E

[
X̂sb(G)ij

∣∣∣ xi 6= xj

]
.

Proof. Let µδ, Cδ and X̂r be as in Theorem C.2, and let µ′δ = C ′δ = 1
100 min{µδ, Cδ}. Lemma C.3 shows that

E
[
〈X̂r(G),xxT〉

]
>

3

4
Cδ · n2 .

The algorithm X̂sb(G) can be obtained by “symmetrizing” the algorithm X̂r as follows: Let σ be a (uniformly) random
permutation [n]→ [n] and let Gσ be the graph obtained from G by σ-permuting its vertices, i.e., we let the edge18 {σi,σj}
belong to Gσ if and only if {i, j} ∈ G. We define the matrix X̂sb(G) ∈ [−1,+1]n as follows:

X̂sb(G)ij = X̂r(Gσ)σiσj .

In other words, we apply the random permutation σ to graph G , we apply the algorithm X̂r , and then we apply the inverse
of the permutation on the resulting matrix.

Due to the symmetry of the SBM distribution, it is not hard to see that for every i, j ∈ [n] with i 6= j, we have

E
[
X̂sb(G)ij · xixj

]
=

∑
i′,j′∈[n]:
i′ 6=j′

E
[
X̂sb(G)ij · xixj

∣∣∣ σi = i′,σj = j′
]
· P (σi = i′,σj = j′)

=
∑

i′,j′∈[n]:
i′ 6=j′

E
[
X̂r(Gσ)σiσj · xixj

∣∣∣ σi = i′,σj = j′
]
· 1

n(n− 1)

(∗)
=

1

n(n− 1)

∑
i′,j′∈[n]:
i′ 6=j′

E
[
X̂r(G)σiσj · xσixσj

∣∣∣ σi = i′,σj = j′
]

17The subscript sb in X̂sb stands for “sufficiently balanced”.
18For simplicity, We denote σ(i) as σi.
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=
1

n(n− 1)

∑
i′,j′∈[n]:
i′ 6=j′

E
[
X̂r(G)i′j′ · xi′xj′

]

=
1

n(n− 1)
E
[
〈X̂r(G),xxT〉

]
− 1

n(n− 1)

∑
i∈[n]

E
[
X̂r(G)ii · x2

i

]
>

1

n(n− 1)
· 3

4
Cδ · n2 − 1

n− 1

>
3

4
Cδ − o(1) ,

where (∗) follows from the symmetry of the SBM distribution under the simultaneous permutation of vertices and labels.

Now notice that

E
[
X̂sb(G)ij · xixj

]
= E

[
X̂sb(G)ij

∣∣∣ xi = xj

]
· P (xi = xj)− E

[
X̂sb(G)ij

∣∣∣ xi 6= xj

]
· P (xi 6= xj)

= E
[
X̂sb(G)ij

∣∣∣ xi = xj

]
·
(
p2 + (1− p)2

)
− E

[
X̂sb(G)ij

∣∣∣ xi 6= xj

]
· (2p(1− p))

= E
[
X̂sb(G)ij

∣∣∣ xi = xj

]
·
(

1

2
+ 2γ2

)
− E

[
X̂sb(G)ij

∣∣∣ xi 6= xj

](1

2
− 2γ2

)
6

1

2
· E
[
X̂sb(G)ij

∣∣∣ xi = xj

]
+ 2γ2 − 1

2
· E
[
X̂sb(G)ij

∣∣∣ xi 6= xj

]
+ 2γ2 ,

where in the last inequality we used the fact that
∣∣∣X̂sb(G)ij

∣∣∣ 6 1. We can deduce that for n large enough, we have

E
[
X̂sb(G)ij

∣∣∣ xi = xj

]
− E

[
X̂sb(G)ij

∣∣∣ xi 6= xj

]
> 2E

[
X̂sb(G)ij · xixj

]
− 8γ2 >

3

2
Cδ − o(1)− 8γ2 > Cδ ,

where the last inequality follows from the fact that

8γ2 6 8µ′2δ 6 8

(
1

100
Cδ

)2

6
Cδ
100

.

By picking C ′δ = Cδ , the lemma follows.

Now we turn to show that if x is sufficiently unbalanced, then there exists an efficient algorithm that achieves pair-wise
weak recovery.

Lemma C.5 (Pair-wise weak recovery for sufficiently unbalanced 2 communities stochastic block mode). Let n, d, ε, p,x =

(xi)i∈[n] and G ∼ SBMn,2,d,ε(x) be as in Theorem 3.1. Further assume that p ∈ [0, 1]. Let δ = ε2d
4 − 1 > 0 and let

γ =
∣∣ 1

2 − p
∣∣ be the unbalancedness of x, and let µ′δ be as in Lemma C.4. There exists a constant C ′′δ > 0 and a randomized

polynomial-time algorithm 19 X̂su taking G as input and producing a matrix X̂su(G) ∈ [−1,+1]n×n such that if

γ >
1

2
µ′δ ,

then for every i, j ∈ [n] with i 6= j, we have

C ′′δ 6 E
[
X̂sb(G)ij

∣∣∣ xi = xj

]
− E

[
X̂sb(G)ij

∣∣∣ xi 6= xj

]
.

Proof. For the sake of simplicity we may assume without loss of generality that p > 1
2 , i.e., p = 1

2 + γ and hence “+1” is
the larger community in expectation.

19The subscript su in X̂su stands for “sufficiently unbalanced”.
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For every i, j ∈ [n], let
deg 6=j(i) = |{v ∈ [n] \ {i, j} : {i, v} ∈ G}|

be the number of vertices in [n] \ {i, j} which are adjacent to i in G.

Let C > 0 be a large enough constant (to be chosen later) and let

x̂
(j)
i (G) =

1

C

(
deg 6=j(i)− d(1− 2/n)

)
·
q∣∣deg 6=j(i)− d(1− 2/n)

∣∣ 6 C
y
∈ [−1, 1] ,

and define the matrix X̂su(G) ∈ [−1,+1]n×n as:

X̂su(G)ij = x̂
(j)
i (G) · x̂(i)

j (G) .

It is not hard to see that given (xi,xj) , the random variables deg6=j(i) and deg 6=i(j) are conditionally independent.

Therefore, x̂(j)
i (G) and x̂(i)

j (G) are conditionally independent given (xi,xj) , hence

E
[
X̂su(G)ij

∣∣∣ xi,xj] = E
[
x̂

(j)
i (G)

∣∣∣ xi,xj] · E [x̂(i)
j (G)

∣∣∣ xi,xj]
= E

[
x̂

(j)
i (G)

∣∣∣ xi] · E [x̂(i)
j (G)

∣∣∣ xj] .
Now, for every v ∈ [v] \ {i, j} , we have

P ({i, v} ∈ G | xi) = E [P ({i, v} ∈ G | xi,xv) | xi] = E
[
d

n

(
1 +

1

2
ε · xixv

) ∣∣∣∣ xi]
=
d

n

(
1 +

1

2
ε · xi E[xv]

)
=
d

n

(
1 +

1

2
ε · (p− (1− p))

)
=
d

n
(1 + εγxi) .

Therefore, the conditional distribution of deg 6=j(i) given xi is Binomial
(
n− 2, dn (1 + εγxi)

)
, hence

E
[
deg6=j(i)

∣∣ xi] = (n− 2) · d
n

(1 + εγxi) ,

and so

E
[

1

C

(
deg 6=j(i)− d(1− 2/n)

) ∣∣∣∣ xi] =
d(1− 2/n) · εγxi

C
. (26)

On the other hand, by the Cauchy-Schwarz inequality, we have

E
[∣∣∣∣x̂(j)

i (G)− 1

C

(
deg 6=j(i)− d(1− 2/n)

)∣∣∣∣ ∣∣∣∣ xi]
6 E

[
1

C

∣∣deg 6=j(i)− d(1− 2/n)
∣∣ · q∣∣deg 6=j(i)− d(1− 2/n)

∣∣ > C
y
∣∣∣∣ xi]

6
1

C
E
[(

deg 6=j(i)− d(1− 2/n)
)2 ∣∣∣ xi]1/2 · E [q∣∣deg 6=j(i)− d(1− 2/n)

∣∣ > C
y2
∣∣∣ xi]1/2

6
1

C
E
[(

deg 6=j(i)− d(1− 2/n)
)2 ∣∣∣ xi]1/2 · P (∣∣deg 6=j(i)− d(1− 2/n)

∣∣ > C
∣∣ xi)1/2 ,

and by Chebychev’s inequality, we have

P
(∣∣deg 6=j(i)− d(1− 2/n)

∣∣ > C
∣∣ xi) 6 E

[(
deg 6=j(i)− d(1− 2/n)

)2 ∣∣∣ xi]
C2

,
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hence

E
[∣∣∣∣x̂(j)

i (G)− 1

C

(
deg 6=j(i)− d(1− 2/n)

)∣∣∣∣ ∣∣∣∣ xi] 6 E
[(

deg 6=j(i)− d(1− 2/n)
)2 ∣∣∣ xi]

C2
. (27)

Now notice that

E
[(

deg6=j(i)− d(1− 2/n)
)2 ∣∣∣ xi] = E

[((
deg 6=j(i)− d(1− 2/n) (1 + εγxi) + (εγxi) d(1− 2/n)

))2 ∣∣∣ xi]
(∗)
6 E

[
2
(
deg6=j(i)− d(1− 2/n) (1 + εγxi)

)2
+ 2 ((εγxi) d(1− 2/n))

2
∣∣∣ xi]

6 2E
[(

deg 6=j(i)− d(1− 2/n) (1 + εγxi)
)2 ∣∣∣ xi]+ 2d2ε2γ2 ,

where (∗) is true because (a+ b)2 6 2a2 + 2b2 for all a, b ∈ R.

Now since the conditional distribution of deg6=j(i) given xi is Binomial
(
n− 2, dn (1 + εγxi)

)
, its conditional expectation

is equal to d(1− 2/n) (1 + εγxi) and its conditional variance is equal to

E
[(

deg 6=j(i)− d(1− 2/n) (1 + εγxi)
)2 ∣∣∣ xi] = (n− 2)

(
d

n
(1 + εγxi)

)
·
(

1− d

n
(1 + εγxi)

)
6 d(1 + εγ) 6 2d .

Therefore,

E
[(

deg 6=j(i)− d(1− 2/n)
)2 ∣∣∣ xi] 6 4d+ 2d2ε2γ2 ,

and hence from (27) we get

E
[∣∣∣∣x̂(j)

i (G)− 1

C

(
deg 6=j(i)− d(1− 2/n)

)∣∣∣∣ ∣∣∣∣ xi] 6 4d+ 2d2ε2γ2

C2
.

Combining this with (26) we get

E
[
x̂

(j)
i (G)

∣∣∣ xi] =
d(1− 2/n) · εγxi

C
±O

(
d+ d2ε2γ2

C2

)
=
d(1− 2/n)

C

(
εγxi ±O

(
1 + dε2γ2

C

))
.

Let

C = C̃(1− 2/n)

(
dε+

1

εµ′δ

)
,

for some large enough constant C̃ > 1 to be chosen later. We have

O

(
1

C

)
6 O

(
1

C̃(1− 2/n)/(εµ′δ)

)
= O

(
εµ′δ
C̃

)
6 O

(
εγ

C̃

)
,

where the last inequality follows from γ > µ′δ
2 . Furthermore,

O

(
dε2γ2

C

)
6 O

(
dε2γ2

C̃(1− 2/n) · dε

)
6 O

(
εγ2

C̃

)
6 O

(
εγ

C̃

)
.

We conclude that

E
[
x̂

(j)
i (G)

∣∣∣ xi] =
d(1− 2/n)

C

(
εγxi ±O

(
εγ

C̃

))
=
d(1− 2/n)εγ

C

(
xi ±O

(
1

C̃

))
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=
dεγ

C̃
(
dε+ 1

εµ′δ

) (xi ±O( 1

C̃

))
= C ′′δ γ

(
xi ±O

(
1

C̃

))
,

where

C ′′δ =
dε2

C̃
(
dε2 + 1

µ′δ

) =
4(1 + δ)

C̃
(

4(1 + δ) + 1
µ′δ

) =
4(1 + δ)µ′δ

C̃ (4(1 + δ)µ′δ + 1)
.

Notice how C ′′δ depends only on δ .

Finally,

E
[
X̂su(G)ij

∣∣∣ xi,xj] = E
[
x̂

(j)
i (G)

∣∣∣ xi] · E [x̂(i)
j (G)

∣∣∣ xj]
= C ′′δ γ

(
xi ±O

(
1

C̃

))
· C ′′δ γ

(
xj ±O

(
1

C̃

))
= (C ′′δ γ)2

(
xixj ±O

(
1

C̃

))
,

and so

E
[
X̂su(G)ij

∣∣∣ xi = xj

]
− E

[
X̂su(G)ij

∣∣∣ xi 6= xj

]
= (C ′′δ γ)2

(
2±O

(
1

C̃

))
.

By choosing C̃ to be an absolute constant which is large enough, we get

E
[
X̂su(G)ij

∣∣∣ xi = xj

]
− E

[
X̂su(G)ij

∣∣∣ xi 6= xj

]
> (C ′′δ γ)2 >

(C ′′δ µ
′
δ)

2

4
,

where the last inequality is true because we assume that γ > µ′δ
2 .

Now we can leverage Lemma C.4 and Lemma C.5 in order to prove Theorem 3.1.

Proof of Theorem 3.1. Let γ, µ′δ, C
′
δ, C

′′
δ be as in Lemma C.4 and Lemma C.5.

We will first distinguish between the sufficiently balanced and sufficiently unbalanced cases by counting the number of
edges which are incident to a random sublinear (but sufficiently high) set of vertices. Let m = dn3/4e and let I be a random
subset of [n] of size m.

Let deg(I) be the number of edges in G from I to [n] \ I. We have

E [deg(I) | I] =
∑

i∈I,j∈[n]\I

E [J{i, j} ∈ GK] =
∑

i∈I,j∈[n]\I

E [P ({i, j} ∈ G | xi,xj)]

=
∑

i∈I,j∈[n]\I

E
[
d

n

(
1 +

1

2
εxixj

)]
=
d

n

∑
i∈I,j∈[n]\I

(
1 +

1

2
εE [xixj ]

)

=
d

n

∑
i∈I,j∈[n]\I

(
1 +

1

2
ε (P (xi = xj)− P (xi 6= xj))

)

=
d

n

∑
i∈I,j∈[n]\I

(
1 +

1

2
ε
(
p2 + (1− p)2 − 2p(1− p)

))

=
dm(n−m)

n

(
1 +

1

2
ε (2p− 1)

2

)
=
dm(n−m)

n

(
1 + 2εγ2

)
= (1± o(1))dn3/4

(
1 + 2εγ2

)
.

So the algorithm X̂ is defined as follows:
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• If deg(I) > dn3/4

(
1 + 2ε

(
3µ′δ
4

)2
)

we apply the algorithm X̂su on the subgraph G([n] \ I) of G induced on n \ I

and define

X̂(G)ij =

{
X̂su(G([n] \ I))ij if i, j ∈ [n] \ I ,
0 otherwise.

• If deg(I) < dn3/4

(
1 + 2ε

(
3µ′δ
4

)2
)

we apply the algorithm X̂sb on the subgraph G([n] \ I) of G induced on n \ I

and define

X̂(G)ij =

{
X̂sb(G([n] \ I))ij if i, j ∈ [n] \ I ,
0 otherwise.

By standard concentration inequalities, we can show that:

• If γ < µ′δ
2 , then with probability 1− o(1) we have deg(I) < dn3/4

(
1 + 2ε

(
3µ′δ
4

)2
)

and so we apply the algorithm

X̂sb which will succeed in achieving pair-wise weak recovery according to Lemma C.4, assuming i, j ∈ [I].

• If γ > µ′δ
2 , then with probability 1− o(1) we have deg(I) > dn3/4

(
1 + 2ε

(
3µ′δ
4

)2
)

and so we apply the algorithm

X̂ub which will succeed in achieving pair-wise weak recovery according to Lemma C.5, assuming i, j ∈ [I].

• If µ
′
δ

2 < γ < µ′δ , then it follows from Lemma C.4 and Lemma C.5 that it does not matter which algorithm we apply
because both of them achieve pair-wise weak recovery, assuming i, j ∈ [I].

Now for any i, j ∈ [n] , the probability of picking any of them in I is vanishingly small. We conclude that the algorithm X̂
satisfies the guarantees sought in Theorem 3.1.

Deferred proof of Section 4 First we prove Fact 4.3.

Proof of Fact 4.3. Let p ∈ [k] be fixed. By Chernoff’s bound, with probability at least 1− n20,
(

1−
√

400k logn
n

)
n
k 6

‖cp(z)‖2 6

(
1 +

√
400k logn

n

)
n
k , hence the property follows by a union bound.

Next we prove Fact 4.5.

Proof. For each ` ∈ [t] , define

E
[
X̂(G`)ij

∣∣∣ f`(z)i = f`(z)j

]
=: C∗`

and let
C∗ =

∑
`∈[t]

C` .

By independence of the observations, the inequality of Fact 4.5 for the case case zi = zj follows with an application of
Hoeffding’s inequality.

The case zi 6= zj needs a bit more work. By Theorem 3.1, for each ` ∈ [t], we have

E
[
X̂(G`)ij

∣∣∣ f`(z)i = f`(z)j

]
= C∗` ,
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and
E
[
X̂(G`)ij

∣∣∣ f`(z)i 6= f`(z)j

]
6 C∗` − C` .

Therefore,

E
[
X̂(G`)ij

∣∣∣ zi 6= zj

]
=E

[
X̂(G`)ij

∣∣∣ f`(z)i = f`(z)j

]
· P (f`(z)i = f`(z)j | zi 6= zj)

+ E
[
X̂(G`)ij

∣∣∣ f`(z)i 6= f`(z)j

]
· P (f`(z)i 6= f`(z)j | zi 6= zj)

6C∗` − C` ·
1

2
,

and so

E

∑
`∈[t]

X̂(G`)ij

∣∣∣∣∣∣ zi 6= zj

 6
∑
`∈[t]

(
C∗` − C` ·

1

2

)
= C∗ − C · t

2
.

The inequality of Fact 4.5 for case zi 6= zj follows with another application of Hoeffding’s inequality.

Now we prove Lemma 4.8.

Proof of Lemma 4.8. Let Ai be a (p, q)-representative and Aj be a (p′, q)-representative, for p , p′ ∈ [k] . It suffices to
show that if p = p′ then ‖Ai −Aj‖2 6 n/k and otherwise ‖Ai −Aj‖2 > n/k . Then no q-representative index remains
unassigned at the end of step 1. By the reverse triangle inequality

|‖Ai −Aj‖ − ‖cp(z)− cp′(z)‖|
6 ‖Ai −Aj − cp(z) + cp′(z)‖
6 ‖Ai − cp(z)‖+ ‖Aj − cp′(z)‖

6 2n · e−q·C
2·t .

For p = p′ we have ‖cp(z)− cp′(z)‖ = 0 and by choice of t , the first inequality follows. For p 6= p′ we have
‖cp(z)− cp′(z)‖ > n

k (2− o(1)) since z is balanced and the second inequality follows again by choice of t.

28


